2015 Consumer Confidence Report

Water System Name: Big Basin Water Co Report Date: July 13, 2016 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2015 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: Surface Water and Wells Name & general location of source(s): Corvan Springs and well#4 are located above Fallen Leaf subdivision. Jamison Springs and well #5 are located above the reservoir at 16575 Jamison Creek Rd. Drinking Water Source Assessment information: All sources checked for Perchlorate, General Mineral, General Physical and Inorganics, surfaces checked for Perchorate, Inorganics and Regulated Organics Time and place of regularly scheduled board meetings for public participation: None

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

For more information, contact: Jim Moore

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

)338-2933

Phone: (831

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

Sofqully

SEP 19 103

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.

Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of m viola	onths in Hion	MC	Ĭ.	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.)	Į.)	More than 1 a		0	Naturally present in the environment
Fecal Coliform or E, coli	(In the year)	er a restraction de l'acceptant		A routine sam repeat sample total coliform sample also d coliform or E	detect and either etects fecal	0	Human and animal fecal waste
TABLE 2	-SAMPLIN	G RESUL	TS SHO	WING THE I	ETECTIO	N OF LEA	D AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentils level detected	AI.	AL	PHG	Typical Source of Contaminant
Lead (ppb)	10/21/14	MQ.	ND		15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	10/21/14	10	.067		1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	- SAMPI	ING RES	SULTS FOR	ODIUM A	ND HARD	NESS
Chemical or Constituent (and reporting units)	Sample Date	Leve Detect	ı	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminan
Sodium (ppm)	12/14/15	0.11		10-13	none	none	Salt present in the water and is generally naturally occurring

your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and step you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead .)S

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
0				

For Water Systems Providing Ground Water as a Source of Drinking Water

FECAL	INDICATOR-P	– SAMPLING OSITIVE GR			
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. colí	(In the year)		0	(0)	Human and animal fecal waste
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste
Coliphage	(In the year)		m	n/a	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IND	ICATOR-POSITIVE	GROUND WATER SOURCES	AMPLE

	SPECIAL NOTICE FOR	UNCORRECTED SIG	INIFICANT DEFICIENCIES	
		200		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				······································
	VIOLA	TION OF GROUND Y	WATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct	Health Effects

Hardness (ppm)	12/14/15	12.4	<u>81-170</u>	none	3300.0	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Any violation of an MCL or A						
TABLE 4 - DET	ECTION C	DF CONTAMINA	NTS WITH A	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Total Haloacetic	2/24.5/26 8/26.12/8 2015	<u>28ppm</u>	3-45	60ppb		Holoacetic Acid are disinfection by-products purduced when chlorine reacts with natural organic matter
Total Tribhlomethanes	2/24,5/26 8/26,12/8 2015	<u>39ppb</u>	14-58	<u>80ppb</u>		Triahmethanes are disinfection by- products produced when chloring reacts with natural organic matter.
TABLE 5 - DETE	CTION OF	CONTAMINAN	ITS WITH A S	ECONDAR	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride ppm Specific Conductance	12/14/15 297	8.9 297	<u>7.4</u> 220-390	6.5-8 140-390	6	X
Sulfate ppm TDS	12/14/15 12/14/15	18.6 163	7.7-25 120-220	5.4-8 84-200		
	TABLE	6-DETECTION	OF UNREGU	LATED CO	NTAMINAI	VTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language
ND	***************************************		***************************************			

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. [INSERT NAME OF UTILITY] is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in

2015 SWS CCR Form

	e e e e		the Violation	Language
***************************************		**************************************		<u> </u>
			and the state of t	
			~	

1.				
				1.
				<u> </u>

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHO	WING TREATMENT OF SURFACE WATER SOURCES
Treatment Technique ^(a) (Type of approved filtration technology used)	
	Turbidity of the filtered water must:
Turbidity Performance Standards (b) (that must be met through the water treatment process)	1 – Be less than or equal to <u>0.2</u> NTU in 95% of measurements in a month.
(water masse oo mot anough the water meaning process)	2 - Not exceed 1 NTU for more than eight consecutive hours.
	3 – Not exceed 5 NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	100%
Highest single turbidity measurement during the year	20
Number of violations of any surface water treatment requirements	9

(a) A required process intended to reduce the level of a contaminant in drinking water.

(b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.

* Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Summary Information for Violation of a Surface Water TT

	VIOLATI	ON OF A SURFACE	WATERTT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language

Summary Information for Operating Under a Variance or Exemption

	t conditions. No water restrictions now. But, during the precious 2 years we lost over \$100,000
	Big Basin Water is starting a rate increase application with the Public Utilities Commission.
There will be a publi	c meeting for any concerned. Have any questions call 338-2933

91654-556-10 Big Basin Water Co. Inc.

PO Box 197 Boulder Creek, CA 95006-0197 PRESORTED
FIRST-CLASS MAIL
U.S. POSTAGE PAID
C2M LLC
22202

1************AUTO**SCH 5-DIGIT 95018

JIM MOORE PO Box 197 Boulder Creek, CA 95006-0197

ժոյիժիպեսկակորկակորկերկաեկիկու